The uniform halting problem for generalized one-state turing machines
نویسندگان
چکیده
منابع مشابه
Asymptotic behavior and halting probability of Turing Machines
Through a straightforward Bayesian approach we show that under some general conditions a maximum running time, namely the number of discrete steps done by a computer program during its execution, can be defined such that the probability that such program will halt after that time is smaller than any arbitrary fixed value. Consistency with known results and consequences are also discussed. 1 Int...
متن کاملQuantum Turing Machines: Local Transition, Preparation, Measurement, and Halting
The Church-Turing thesis 2 states that to be computable is to be computable by a Turing machine and the modern discipline in computational complexity theory states that to be efficiently computable is to be computable by a Turing machine within polynomial steps in the length of the input data. However, Feynman pointed out that a Turing machine cannot simulate a quantum mechanical process effici...
متن کاملThe Transitivity Problem of Turing Machines
A Turing machine is topologically transitive if every partial configuration — that is a state, a head position, plus a finite portion of the tape — can reach any other partial configuration, provided that it is completed into a proper configuration. We characterize topological transitivity and study its computational complexity in the dynamical system models of Turing machines with moving head,...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولGeneric algorithms for halting problem and optimal machines revisited
A classical result says that the halting problem is undecidable: there is no algorithm that, given a computation, says whether it terminates or not. A related result says that for some computations the termination statement is undecidable in Gödel’s sense (neither provable nor refutable). Still in many cases the termination question is not that hard. Maybe, the difficult cases are rare exceptio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information and Control
سال: 1969
ISSN: 0019-9958
DOI: 10.1016/s0019-9958(69)90472-0